QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction.
نویسندگان
چکیده
The method for QSAR modelling of rat acute toxicity based on the combination of QNA (Quantitative Neighbourhoods of Atoms) descriptors, PASS (Prediction of Activity Spectra for Substances) predictions and self-consistent regression (SCR) is presented. PASS predicted biological activity profiles are used as independent input variables for QSAR modelling with SCR. QSAR models were developed using LD50 values for compounds tested on rats with four types of administration (oral, intravenous, intraperitoneal, subcutaneous). The proposed method was evaluated on the set of compounds tested for acute rat toxicity with oral administration (7286 compounds) used for testing the known QSAR methods in T.E.S.T. 3.0 program (U.S. EPA). The several other sets of compounds tested for acute rat toxicity by different routes of administration selected from SYMYX MDL Toxicity Database were used too. The method was compared with the results of prediction of acute rodent toxicity for noncongeneric sets obtained by ACD/Labs Inc. The test sets were predicted with regards to the applicability domain. Comparison of accuracy for QSAR models obtained separately using QNA descriptors, PASS predictions, nearest neighbours' assessment with consensus models clearly demonstrated the benefits of consensus prediction. Free available web-service for prediction of LD50 values of rat acute toxicity was developed: http://www.pharmaexpert.ru/GUSAR/AcuToxPredict/.
منابع مشابه
ADMET evaluation in drug discovery: 15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling
BACKGROUND Determination of acute toxicity, expressed as median lethal dose (LD50), is one of the most important steps in drug discovery pipeline. Because in vivo assays for oral acute toxicity in mammals are time-consuming and costly, there is thus an urgent need to develop in silico prediction models of oral acute toxicity. RESULTS In this study, based on a comprehensive data set containing...
متن کاملRadiomics modelling of IMRT induced acute rectal toxicity using clinical and magnetic resonance imaging features
Introduction: Rectal toxicity is a dose limiting issue in prostate cancer radiotherapy. Prediction of these effects may be used to tailor the therapy. The purpose of this work was to develop predictive radiomic models based on clinical, dosimetric and radiomic features extracted from rectal wall magnetic resonance image (MRI). Materials and Methods: This st...
متن کاملApplication of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives
Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...
متن کاملRidge regression ensemble for toxicity prediction
Traditional methods of assessing chemical toxicity of various compounds require tests on animals, which raises ethical concerns and is expensive. Current legislation may lead to a further increase of demand for laboratory animals in the next years. As a result, automatically generated predictions using Quantitative Structure–Activity Relationship (QSAR) modelling approaches appear as an attract...
متن کاملTowards Global QSAR Model Building for Acute Toxicity: Munro Database Case Study
A series of 436 Munro database chemicals were studied with respect to their corresponding experimental LD50 values to investigate the possibility of establishing a global QSAR model for acute toxicity. Dragon molecular descriptors were used for the QSAR model development and genetic algorithms were used to select descriptors better correlated with toxicity data. Toxic values were discretized in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular informatics
دوره 30 2-3 شماره
صفحات -
تاریخ انتشار 2011